Воздушный трансформатор

Сухие трансформаторы: технические характеристики

Воздушный трансформатор

Преобразователи предназначены для изменения электрического тока посредством использования электромагнитной индукции. По типу конструкцию бывают масляные и сухие трансформаторы с литой изоляцией, которые отличаются между собой принципом охлаждения.

Что это такое

Сухие, разделительные или воздушные трансформаторы (ТС, ТСШ, печные ТСП) – это вид преобразователей ГОСТ Р 54827-2011, в которых магнитная система и две или более обмотки не погружаются в масляный раствор, а остужаются за счет движения воздушных потоков.

Эти электрические устройства более просты и безопасны в эксплуатации хотя бы потому, что производители устранили проблему регулярной замены масла и контроля утечки охлаждающей жидкости.

Также, как и любые другие трансформаторы они могут быть понижающими (для преобразования и понижения напряжения), повышающими (с прямо-пропорциональным принципом действия).

Фото – ТМПНГ 630

Недостатком работы считается то, что воздух охлаждает обмотки значительно медленнее, нежели масло. Поэтому между изоляциями сухих преобразователей большее расстояние и увеличенная ширина вентиляционных проходов.

Преимущества сухих трансформаторов:

  1. Безопасность. В масляных устройствах (Zucchini, ТМС) велика вероятность утечки масла или возгорания преобразователя;
  2. Простота в установке и использовании. В «мокрых» преобразователях нужно регулярно менять масло, иначе оно стареет, теряет свои свойства и засоряет протоки. Воздушные трансформаторы можно устанавливать в любых помещениях, без использования специальных сооружений (защитных кожухов). Для монтажа подходят короткие провода. Они нуждаются в регулярной чистке протоков и периодическом осмотре;
  3. Перегрузка возможна очень высокого напряжения, но на непродолжительный срок;
  4. Экологичность. Их можно устанавливать на участках, которые требует повышенной безопасности окружающей среды. Они активно применяются на территориях общего пользования (школы, институты, кинотеатры и т. д.), на различных предприятиях по переработке нефти, газа и химических отходов, также их используют реакторы атомных электростанций и для собственных нужд.

Но при этом, высоковольтные сухие модели имеют увеличенные габариты, в сравнении с моделями, работающими на жидком охлаждении. Иными словами, преобразователи, имеющие одинаковые параметры работы (показатели номинального напряжения, тока и т. д.), но работающие на различных диэлектриках, будут значительно отличаться друг от друга размерами.

Фото – допустимые перегрузки сухих трансформаторов

Конструктивные особенности

Сухие воздушные трансформаторы с литой изоляцией бывают высоковольтные и низковольтные. Их мощность определяет тип вентиляции.

Для низковольтных преобразователей применяется естественная система охлаждения, в которой воздух, попадая в вентиляцию природным путем, охлаждает магнитные обмотки и прочие токоведущие части.

Высоковольтные автотрансформаторы и прочие преобразователи с мощностью до 10 кВА (например, ТЛС-10) охлаждаются принудительно дутьем.

Фото – конструкция сухих трансформаторов

Схема включает в себя следующие элементы:

  • 1 – высоковольтный подвод;
  • 2 – шпильки;
  • 3 – зажимные подкладки из фарфора;
  • 4 – прижимное кольцо;
  • 5 – изоляторы для высокого напряжения;
  • 6 – отводы;
  • 7 – подкладки из фарфора для отводов;
  • 8 – зажимная доска;
  • 9 – регулировочные ответвления для высоковольтных отводов;

На схеме изображен высоковольтный преобразователь без кожуха, т. к., в большинстве случаев, такие устройства эксплуатируются без использования дополнительной изоляции. При необходимости кожух проектируется строго индивидуально для определенного трансформатора. Его мощность – 320 кВА.

Фото – GDNN

Отводы воздушных сухих преобразователей изготавливаются из алюминиевых или медных проводов. Зажимы, которыми регулируется работы преобразователя, выводятся на доску 8.

Для отводов высоковольтного напряжения (6) используются опорные изоляторы 5, для низковольтного – фарфоровые подкладки (на рисунке 7).

На рисунке видно, что в отличие от масляных, здесь нет расширителя и бака для хранения масла.

Еще одним подвидом сухих трансформаторных подстанций являются измерительные преобразователи. Это очень важное электрооборудование для понижения цепей высокого напряжения с целью обеспечения питания вторичных сетей.

Фото – схема сухого измерительного трансформатора

По конструкции они также бывают однофазные (универсальные), например, ТСШ-4, и трехфазные ТСЗ, ТС (используются только, если напряжение менее 18 кВ). В зависимости от области эксплуатации они могут быть масляные (с жидким диэлектриком), сухие (с принудительным воздушным охлаждением), с литой изоляцией (для установки на пожароопасных участках).

Фото – конструкция ТС

: трансформаторы Legrand серии Zucchini

Параметры

Каждый преобразователь имеет определенные показатели работы. Какие технические характеристики имеет ТСЗГЛ-1000 (трансформатор сухой 1000 кВА):

Номинальная мощность, кВА1000
Ток, А1,5
Потери мощности при ХХ и КЗ, Вт2,8/1,8
Напряжение короткого замыкания, В6

Эти устройства используются в различных тяговых механизмах, они комплектуются обмотками Siemens, что повышает их качество и стойкость к перепадам напряжения. Температура охлаждения до -60. Преобразователи этого типа изготавливаются с литой изоляцией, как и Триал (Trihal, фирмы Шнайдер Электрик) и SGB-SMIT, что гарантирует их повышенную безопасность от возгорания.

RESIBLOC 315 – 2500 кВА от ABB (АВВ):

Мощность, кВАДо 63 МВА
Напряжение первичной обмотки, кВДо 36
Вторичной обмотки, кВДо 24
Частота, Гц50, 60 и 16 2/3
Принцип охлажденияПринудительное и воздушное/принудительное
ЗащитаIP00 – IP54

Их импортными аналогами являются итальянские GBE, SEA S.p.A, TESAR и прочие.

ТСЗП-10/0,7-УХЛ4(О4) (ТСП):

Номинальная мощность, кВА7,3
Номинальные напряжения обмоток (сетевой /вентильной), В380; 400; 500; 660/
Масса, кг205
Габариты, ДхШхВ, мм625 х 305 х 325

Параметры серии ТП:

ХарактеристикиЗначения
Мощности, кВА0.1; 0.16; 0.25; 0.40; 0.63; 1.0; 1.6; 2.5; 4.0; 6.3; 10.0; 16.0; 25.0; 40.0; 63.0;100.0
Мощности трехфазных трансформаторов, кВА1.0; 1.6; 2.5; 4.0; 6.3; 10.0; 16.0; 25.0; 40.0; 63.0; 100.0; 160.0; 250.0
Вид охлаждениявоздушное, естественное
ИзоляцияВ
Степень защитыIP20
Климатическое исполнениеУ или УХЛ(для районов с умеренным или умеренно-холодным климатом)

Однофазные сухие тороидальные трансформаторы серии ОСМ-0,063 (аналог TTR):

Мощность, кВА0,063
Номинальное напряжение первичной обмотки, В110; 220; 380; 660
У вторичной обмотки, В12; 14; 24; 29; 42; 56; 110; 130; 220; 260
Вес, кг1,4

Сухие трансформаторы Trihal 1600 (есть модификации от 630 ква до 3200):

Мощность, кВА1600 кВа
Напряжение обмоток, первичной и вторичной, кВ6/0,4
D/Yn11
IP00

Обзор цен

Купить сухой трансформатор можно в любом фирменном магазине или на предприятии-производителе. Завод предлагает стоимость от 500 до 10 000 долларов.

ГородЦена ТСЗГЛФ 630 кВА, у. е.
Екатеринбург8500
Запорожье8550
Москве8600
Новосибирск8500
Санкт-Петербург8600

Источник: https://www.asutpp.ru/suxie-transformatory.html

Что такое трансформатор: устройство, принцип работы, схема и назначение

Воздушный трансформатор

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов  и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

 

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

 

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок.

Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается.

Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

 

Конечно, трансформаторы не так просты, как может показаться на первый взгляд – ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике  с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Источник: https://Zaochnik.ru/blog/chto-takoe-transformator-ustrojstvo-princip-raboty/

Электрические трансформаторы

Воздушный трансформатор

ВИДЫ И ТИПЫ – ХАРАКТЕРИСТИКИ – ПРИМЕНЕНИЕ

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения. Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

Виды и типы трансформаторов

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы.

Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.

Импульсные трансформаторы.

Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.

Разделительный трансформатор.

Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.

Пик—трансформатор.

Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

В начало

Характеристики трансформаторов

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

В начало

Область применения

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.

В зависимости от назначения трансформаторы делят на:

Силовые.

Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.

Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.

Тока.

Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Напряжения.

Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.

В начало

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/transformatory.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.