Простой лабораторный блок питания

Как собрать блок питания с регуляторами своими руками

Простой лабораторный блок питания

Для радиолюбителей, да и вообще современного человека, незаменимой вещью в доме является блок питания (БП), ведь он имеет очень полезную функцию — регулирование напряжения и тока.

При этом мало кто знает, что сделать такой прибор при должном старании и знаниях радиоэлектроники вполне реально своими руками. Любому радиолюбителю, которому нравится возиться дома с электроникой, самодельные лабораторные блоки питания позволят заниматься своим хобби без ограничений. Как раз о том, как своими руками сделать регулируемый тип блок питания расскажет наша статья.

Что нужно знать

Блок питания с регулировкой тока и напряжения в современном доме – необходима вещь. Этот прибор, благодаря своему специальному устройству, может преобразовать напряжение и ток, имеющееся в сети до того уровня, который может потреблять конкретный электронный прибор. Вот примерная схема работы, по которой можно своими руками сделать подобный прибор.

Схема

Но готовые БП стоят достаточно дорого, для того чтобы покупать их под конкретные нужды. Поэтому сегодня очень часто преобразователи для напряжения и тока изготавливаются своими руками.

Обратите внимание! Самодельные лабораторные блоки питания могут иметь различные габариты, показатели мощности и прочие характеристики. Все зависит от того, какой именно преобразователь вам нужен и для каких целей.

Профессионалы могут легко сделать мощный блок питания, в то время как новичкам и любителям подойдет для начала простой тип прибора. При этом схема, в зависимости от сложности, может использоваться самая разная.

Что нужно учитывать

Детали

Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:

  • трансформатор;
  • преобразователь;
  • индикатор (вольтметр и амперметр).
  • транзисторы и прочие детали, необходимые для создания качественной электрической сети.

Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит.

К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП.

Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.

Простая схема сборки

Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:

  • она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники;
  • простой тип сборки и дальнейшей настройки;
  • здесь нижний предел для напряжения составляет 0,05 вольт;
  • двухдиапазонная защита для показателя тока (на 0,05 и 1А);
  • обширный диапазон для выходных напряжений;
  • высокая стабильность в функционировании преобразователя.

Диодный мост

В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.

Обратите внимание! Диодный мост следует выбирать, исходя из показателя максимального тока, который будет ограничиваться имеющейся защитой.

Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон. Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования.

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Приступаем к сборке

Трансформатор ТС-150–1

После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями.
Для сборки вам понадобятся:

  • мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В;
  • конденсатор. Можно использовать модель на 10000 мкФ 50 В;
  • микросхема для стабилизатора;
  • обвязки;
  • детали схемы (в нашем случае — схема, которая указана выше).

После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.

Готовый БП

Для сборки БП используются следующие детали:

  • германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы;
  • на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
  • стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения;

Обратите внимание! Поскольку стабилитрон Д814 отбирает ровно половину напряжения на выходе, то его следует выбирать для создания 0-25В выходного напряжения примерно на 13 В.

  • нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя;
  • стрелочные индикаторы отображают показатели тока и напряжения.

Детали для сборки

Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.

Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.

Заключение

Используя простые схемы для сборки регулируемого типа блока питания, вы сможете набить руку и в дальнейшем делать своими руками более сложные модели.

Не стоит брать на себя непосильный труд, так как в конечном итоге вы можете не получить желаемый результат, а самодельный преобразователь будет работать неэффективно, что негативным образом может сказаться как на самом приборе, так и на функциональности электроаппаратуры, подключенной к нему.

Если же все сделать правильно, то на выходе вы получите отличный блок питания с регулировкой напряжения для своей домашней лаборатории или других бытовых ситуаций.

Источник: https://1posvetu.ru/ustrojstva/reguliruemyj-blok-pitaniya-svoimi-rukami.html

Лабораторный БП на основе Простого и доступного БП

Простой лабораторный блок питания

Лабораторный блок питания

В этой статье я хотел бы рассказать о своем лабораторном БП, за основу которого была взята схема «Простой и доступный БП».

Вариантов этого устройства довольно много, авторы постоянно что-то добавляют, вносят изменения, на тот момент, когда я начал собирать, последней версией была v 13. Однако я немного изменил схему, в свою пользу, т.к.

планировал использовать БП на большие токи и хотел добавить схему переключения обмоток трансформатора. Вот схема оригинал:

В своем варианте я убрал «Индикатор перегрузки» на DA 1.3 и «Схему измерителя тока» на DA 1.4 и т.к. теперь два  ОУ освободились, я решил на них же собрать «Схему переключения обмоток трансформатора», но об этом позже.

Из-за этого была изменена схема стабилизации +12В для микросхемы ОУ, был использован отдельный источник питания со стабилизатором 7812. Также добавил силовых транзисторов, вместо одного 2N3055 я поставил пару 2SC5200.

Максимальный отдаваемый ток теперь 5,6А. Вот мой вариант схемы:

В итоге мой вариант регулирует напряжение от 0 до 25В и может ограничивать максимальный ток на уровне от 0,01А до 5,6А. Для окончательной настройки схемы нужно установить максимальное напряжение резистором R13 и подобрать резисторы R14 и R16 для макс.  и мин. тока соответственно.

Управление обмотками трансформатора

Бывают такие случаи,что нужно подключить к ЛБП какую-то низковольтную нагрузку, но с довольно большим током, например 5В при токе 5А. Тогда получается, что на силовых транзисторах будет падать несколько десятков вольт.

 К примеру после диодного моста и конденсатора в фильтре у нас 30В, а на выходе ЛБП всего 5В, значит на транзисторе будет падать 25В, и это при токе в 5А, получается, что бедный транзистор как-то должен превратить 125Вт просто в тепло. Одному мощному транзистору это не под силу, просто напросто произойдет тепловой пробой и он выйдет из строя, да и двум тяжко будет.

На этой случай придумана схема, которая переключает обмотки трансформатора в зависимости от выходного напряжения ЛБП. К примеру, если нужно 5В, то зачем подавать на ЛБП 30В?

Ниже изображена схема переключения обмоток:

У меня же сам ЛБП и «схема переключения» собраны на одной плате. Переключение обмоток происходит при напряжениях на выходе 12В и 18В. Настройка схемы сводится к установке нужных напряжений переменными резисторами. Резистором R2 устанавливается деление выходного напряжения на 10, т.е.

если на выходе ЛБП 25В, то на среднем выводе R2 (ползунке)  должно быть 2,5В. Далее устанавливаем пороги срабатывания реле. Например у меня при 12В срабатывает первое реле, значит на 2 ножке микросхемы нужно установить 1,2В, соответственно при 18В на 6 ножке устанавливаем 1,8В.

Позже можно будет заменить переменные резисторы R3 и R5 на два постоянных, спаяв их как делитель напряжения.

Охлаждение

В качестве радиаторов были собраны экспериментальные варианты из алюминиевых карнизов для штор, профили прикручиваются винтами к алюминиевой пластине ( признаюсь, хотелось бы потолще) и естественно промазываются термопастой. Эффективность таких радиаторов довольна неплохая. В верхней крышке корпуса есть отверстия для охлаждения.

Ампервольтметры

В качестве измерителя напряжения и тока была использована довольно известная схема на специализированной  м\с  ICL7107. Я собирал по этой схеме:

Отдельное питание

Для питания индикации и микросхем LM324 в ЛБП используется отдельный трансформатор и стабилизаторы +5В и +12В.

О корпусе

Основой для корпуса стал кусок стеклотекстолита, толщиной около 6-7 мм. На нем все и собиралось, далее были прикручены передняя панель со всеми органами управления и индикацией и задняя с вентиляторами и сетевым разьемом. И сверху П–образная крышка, обклеенная синей самоклейкой.

Трансформаторы я использовал ТН 60. У них довольно мощные обмотки по 6,3В. Ток до 7А. По весу данный аппарат получился около 10кг.

Диодные мосты серии КВРС, 35-амперные, также посаженые на общий радиатор с силовыми транзисторами.

Вот общий вид моего ЛБП:

Список радиоэлементов

Обозначение Тип Номинал Количество ПримечаниеМагазинМой блокнотDA1

VT1

VT2

VT3

VD1

VD2, VD3

C2, C4, C9, C10

C3, C7

C5

C6

C8

R1

R2, R4, R6, R29

R3

R5, R19, R22, R23

R7

R10

R11

R12

R14

R16

R20

R21

R24, R28

R26

R30

R8

R9

R15

R13, R25

R27

HL1

DA1

VD2, VD3

C2, C4

C3, C7

C6

C8

C5

R2, R4, R6

R3

R5, R19

R7, R16

R10

R11

R12

R14

R20

R9

R15

R13

OP2

VT1, VT2

C1

R1

R4

R6, R7

R8, R9

R2

R3, R5

K1, K2

D1-D3

D4

C1, C4, C5, C8-C10

C2

C3

C6, C7

R1

R2

R3

R4

R6

R8

R9

R5

R7

1 схема
Операционный усилительLM3241Поиск в UtsourceВ блокнот
Биполярный транзистор2N55511Поиск в UtsourceВ блокнот
Биполярный транзисторBD1401Поиск в UtsourceВ блокнот
Биполярный транзистор2N30551Поиск в UtsourceВ блокнот
Стабилитрон12В1Поиск в UtsourceВ блокнот
Выпрямительный диод1N54082Поиск в UtsourceВ блокнот
Конденсатор0.1 мкФ4Поиск в UtsourceВ блокнот
Конденсатор100 нФ2Поиск в UtsourceВ блокнот
Электролитический конденсатор10 мкФ 63В1Поиск в UtsourceВ блокнот
Конденсатор0.68 мкФ1Поиск в UtsourceВ блокнот
Конденсатор1 мкФ1Поиск в UtsourceВ блокнот
Резистор1.8 кОм10.5 Вт (4.3 кОм 1 Вт)Поиск в UtsourceВ блокнот
Резистор1 кОм4Поиск в UtsourceВ блокнот
Резистор3 кОм10.5 вт (5.6 кОм 1 Вт)Поиск в UtsourceВ блокнот
Резистор10 кОм4Поиск в UtsourceВ блокнот
Резистор100 Ом1Поиск в UtsourceВ блокнот
Резистор100 кОм1Поиск в UtsourceВ блокнот
Резистор15 кОм1(39 кОм)Поиск в UtsourceВ блокнот
Резистор9.1 кОм1Поиск в UtsourceВ блокнот
Резистор120 кОм1Поиск в UtsourceВ блокнот
Резистор300 Ом1Поиск в UtsourceВ блокнот
Резистор0.33 Ом12 ВтПоиск в UtsourceВ блокнот
Резистор750 Ом1Поиск в UtsourceВ блокнот
Резистор2.7 кОм2Поиск в UtsourceВ блокнот
Резистор20 кОм1Поиск в UtsourceВ блокнот
Резистор0.1 Ом11 ВтПоиск в UtsourceВ блокнот
Переменный резистор1 кОм1Поиск в UtsourceВ блокнот
Переменный резистор10 кОм1Поиск в UtsourceВ блокнот
Переменный резистор5 кОм1Поиск в UtsourceВ блокнот
Подстроечный резистор2 кОм2Поиск в UtsourceВ блокнот
Подстроечный резистор1 кОм1Поиск в UtsourceВ блокнот
Светодиод1Поиск в UtsourceВ блокнот
Схема 2
Операционный усилительLM3241Поиск в UtsourceВ блокнот
Биполярный транзистор2SC52002Поиск в UtsourceВ блокнот
Выпрямительный диод1N54082Поиск в UtsourceВ блокнот
Конденсатор0.1 мкФ2Поиск в UtsourceВ блокнот
Конденсатор100 нФ2Поиск в UtsourceВ блокнот
Конденсатор0.68 мкФ1Поиск в UtsourceВ блокнот
Конденсатор1 мкФ1Поиск в UtsourceВ блокнот
Электролитический конденсатор10 мкФ 63В1Поиск в UtsourceВ блокнот
Резистор1 кОм3Поиск в UtsourceВ блокнот
Резистор3 кОм10.5 вт (5.6 кОм 1 Вт)Поиск в UtsourceВ блокнот
Резистор10 кОм2Поиск в UtsourceВ блокнот
Резистор100 Ом2Поиск в UtsourceВ блокнот
Резистор100 кОм1Поиск в UtsourceВ блокнот
Резистор15 кОм1(39 кОм)Поиск в UtsourceВ блокнот
Резистор9.1 кОм1Поиск в UtsourceВ блокнот
Резистор110 кОм1Поиск в UtsourceВ блокнот
Резистор0.33 Ом12 ВтПоиск в UtsourceВ блокнот
Переменный резистор10 кОм1Поиск в UtsourceВ блокнот
Переменный резистор5 кОм1Поиск в UtsourceВ блокнот
Подстроечный резистор2 кОм1Поиск в UtsourceВ блокнот
Схема 3
Операционный усилительLM3581Поиск в UtsourceВ блокнот
Биполярный транзисторBC5472Поиск в UtsourceВ блокнот
Конденсатор100 нФ1Поиск в UtsourceВ блокнот
Резистор56 кОм1Поиск в UtsourceВ блокнот
Резистор2 кОм1Поиск в UtsourceВ блокнот
Резистор470 кОм2Поиск в UtsourceВ блокнот
Резистор1 кОм2Поиск в UtsourceВ блокнот
Переменный резистор5 кОм1Поиск в UtsourceВ блокнот
Переменный резистор15 кОм2Поиск в UtsourceВ блокнот
Переключатель2Поиск в UtsourceВ блокнот
Схема 4
МикросхемаКР572ПВ2А1Поиск в UtsourceВ блокнот
Выпрямительный диод1N40073Поиск в UtsourceВ блокнот
ИС источника опорного напряженияTL4311Поиск в UtsourceВ блокнот
Конденсатор0.1 мкФ6Поиск в UtsourceВ блокнот
Конденсатор0.047 мкФ1Поиск в UtsourceВ блокнот
Конденсатор0.01 мкФ1Поиск в UtsourceВ блокнот
Электролитический конденсатор10 мкФ 10В2Поиск в UtsourceВ блокнот
Резистор470 кОм1Поиск в UtsourceВ блокнот
Резистор1 МОм1Поиск в UtsourceВ блокнот
Резистор100 кОм1Поиск в UtsourceВ блокнот
Резистор0.01 Ом1Поиск в UtsourceВ блокнот
Резистор1 кОм1Поиск в UtsourceВ блокнот
Резистор300 Ом1Поиск в UtsourceВ блокнот
Резистор51 Ом1Поиск в UtsourceВ блокнот
Переменный резистор1 кОм1Поиск в UtsourceВ блокнот
Подстроечный резистор3.3 кОм1Поиск в UtsourceВ блокнот
Семисегментный индикаторОА4Поиск в UtsourceВ блокнот
Добавить все

Скачать список элементов (PDF)

Прикрепленные файлы:

  • ЛБП схемы и печатки.rar (342 Кб)

Источник: http://cxem.net/pitanie/5-261.php

Лабораторный блок питания своими руками

Простой лабораторный блок питания

> Советы электрика > Лабораторный блок питания своими руками

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Самостоятельная сборка БП

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Часть схемы простейшего БП без трансформатора

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Схема БП со стабилитроном

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блок питания для шуруповерта 12В своими руками

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Схема регулируемого БП

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для  устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Схема двухполярного блока питания

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен).

Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов.

Варианты можно найти в сети.

Советы по оформлению корпуса

Как сделать блок питания из энергосберегающих ламп

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Самодельный БП

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Источник: https://elquanta.ru/sovety/laboratornyjj-blok-pitaniya-svoimi-rukami.html

Простой лабораторный блок питания

Простой лабораторный блок питания

Вся схема блока питания работает устойчиво, без возбуждения и перерегулирования. Объединить в одном блоке эти требования сложно, поэтому рассмотрим несколько схем и вариантов лабораторных блоков питания.

У каждого радиолюбителя, будь он чайник или даже мегапрофи, на краю стола должен чинно и важно лежать блок питания. У меня на столе в данный момент лежат два блока питания.

Заводские блоки питания я покупал давненько, так что они мне обошлись недорого. 3 Ампер, после которого блок уходит в защиту (очень удобная функция, кто использовал, тот знает). На входы 1 и 2 подается переменное напряжение 24 Вольта от сетевого трансформатора. Трансформатор должен быть приличных габаритов, чтобы в нагрузку он смог выдать до 3 Ампер в легкую.

На восьмом выводе написано «NC», что говорит о том, что этот вывод никуда цеплять не надо. Ни к минусу, ни к плюсу питания. В схеме выводы 1 и 5 также никуда не цепляются. Схему я перечерчивать не стал, поэтому есть элементы, которые могут ввести в замешательство — это переменные резисторы.

На разработку этого блока питания потребовался один день, за этот же день он был реализован, и весь процесс был снят на видео камеру. Максимальный выходной ток схемы 14Ампер, максимальное выходное напряжение до 40 Вольт — больше не стоит. Довольно плавное ограничение тока и регулировка напряжения.

Схема в таком состоянии может находится сколько угодно времени. В очередной своей статье, решил показать как собирался блок питания с регулировкой напряжения и тока. Схему я увидел в видео у Ака и решил сделать себе такое же устройство. Схема достаточно проста и не нуждается в наладке, все детали можно найти в старом телевизоре.

Но у меня почему то плохо перенеслось и пришлось дорисовывать перманентным маркером. Просушил её, снял тонер растворителем и вот что получилось. Вот и все, можете радоваться, схема собрана.

Три постоянных резистора на 820 ом, 470 ом, 24 к. Два переменных резистора первый от (4,7к-10к)и второй 84к. И еще один диод 1N4007. Захотелось немного рассказать о своем блоке питания для различных радиолюбительских целей и поделиться с вами его схемой и печаткой. Много лет на моем вооружении был простейший блок питания на двух транзисторах с возможностью плавной регулировки напряжения.

Т.е, например конденсатор впаиваем ПЛЮСОМ на общий, то же самое с выпрямителем – среднюю точку трансформатора подключаем к Х1 на схеме, а плюс к общему. Ко всей этой схеме слепил простейший выпрямитель на сдвоенном диоде шоттки.

Для уменьшения пульсаций поставил в выпрямитель два конденсатора по 4700мкф. Скорее всего такая емкость не нужна для блока питания, но я довольно часто подключаю к нему разные звуковоспроизводящие устройства, и для них как известно емкость лишней не бывает. Вот и все…при правильной сборке и использовании целых деталей блок питания работает сразу и не требует какой-либо настройки.

Хороший лабораторный БП своими руками

Все детали разместил в корпусе от компьютерного блока питания. В процессе эксплуатации блок питания показал себя только с положительной стороны и не преподнес никаких неприятных сюрпризов. Почему не на 5? Как вы могли увидеть в видео-обзоре блока питания, некоторая просадка напряжения все же присутствует, но очень незначительно.

Я раздобыл на рынке толстый старый справочник по советским транзисторам, и там есть и кт3107 и кт361. Найдя их там, я вижу, что параметры их действительно похожи. Однако мне так и не удалось получить на выходе ток более 2х ампер, падает напряжение, хотя трансформатор может выдать 20А без проблем (сделан из транса микроволновки, заменил вторичку).

Светодиод по схеме неверно показан, необходимо поменять полярность… а то транзистор его открывает отрицательным напряжением…. Но как правильно переделать эту схему чтобы она была не с общим плюсом а с общим минусом? Доброго времени суток.

Вот решил повторить схемку и глядя на печатку появились некоторые вопросы! Сопротивление возле RED PIT и в верхней части платы что за деталь? Всем привет! Хочу предложить на Ваш суд свой модернизированный вариант лабораторного двух-канального блока питания.

Это простой, универсальный DC/DC — преобразователь (преобразователь одного напряжения постоянного тока в другое). На все случаи, конечно не просчитаешь, но что-то среднее вполне можно «изобрести» и реализовать. Решил пополнить свою лабораторию двух-полярным блоком питания.

1. Маломощный лабораторный блок питания с чистым выходом.БП разрабатывался как универсальный лабораторный источник питания в для работы над маломощными и среднемощными поделками

Но при самостоятельном изготовлении источника питания с такими характеристиками, приходится решать ряд проблем, одной из которых самой главной, является его КПД во всём диапазоне выходных напряжений. Начнем с того, что здесь используется трансформатор с вторичной обмоткой 24В/3А, который подключается через входные зажимы 1 и 2 (качество выходного сигнала пропорционально качеству трансформатора).

Источник: http://zdravbaza.ru/prostoy-laboratornyiy-blok-pitaniya/

Блок регулирования напряжения и тока для простого лабораторного источника питания

Простой лабораторный блок питания

В любой радиолюбительской мастерской не обойтись без источника питания с возможностью изменения величины напряжения в широких пределах.

Представленное устройство предназначено для регулирования напряжения от полвольта почти до величины входного напряжения и регулирования величины ограничения тока нагрузки.

При наличии готового нерегулируемого источника питания напряжением 20-30 В и допустимым током нагрузки до 5 А, этот блок позволит сделать источник универсальным.

Схема

За основу взята распространённая схема (рис.1), обсуждаемая на некоторых радиолюбительских форумах.

Рисунок 1. Вырезка из журнала Радио.

Честно говоря, стабилизированной эту схему назвать нельзя однозначно, но тем не менее я рекомендую её для начинающих радиолюбителей, нуждающихся в регулируемом источнике питания. Схема хороша тем, что позволяет регулировать напряжение в широких пределах, а также ограничивать ток нагрузки, что исключает перегрузку источника питания при коротких замыканиях.

У этой схемы есть один существенный недостаток. При регулировании напряжения, оно изменяется не равномерно.

От минимума напряжение нарастает очень медленно, но ближе к максимуму процесс становится настолько стремительным, что точная установка требуемого значения весьма затруднительна. По этому поводу на многих форумах не мало соплей и плевков.

Не советую уподобляться истерикам и размазывать сопли по этому поводу, всё, что требуется от настоящего радиолюбителя – включать мозг.

Суть проста. Чтобы получить линейный характер регулирования при нелинейном изменении величины регулирования линейным элементом, нужно скорректировать его характеристику в сторону обратной нелинейности… Вот такая не шуточная шутка получилась 🙂

Предлагаю Вам свой вариант схемы, в котором применена отечественная элементная база и добавлен элемент коррекции нелинейности регулировки напряжения – рисунок 2.

Рисунок 2. Схема блока регулирования напряжения и ограничения тока нагрузки.

Обратите внимание на подстроечный резистор R7. Его роль как раз и заключается в коррекции характеристики регулирования.

В качестве регулирующего элемента я применил транзистор КТ819ГМ (просто оказался в наличии). Он выполнен в массивном металлическом корпусе и рассчитан на ток коллектора до 15А. Этот транзистор необходимо размещать на радиаторе для эффективного теплоотвода.

В качестве шунта R2 я использовал параллельную спайку пяти двухваттных резисторов 5,1 Ом по 2 Вт каждый. Этот шунт я так же вынес за пределы платы, расположив рядом с радиатором транзистора.

У меня не оказалось переменного резистора 470 Ом, поэтому мне пришлось для R5 использовать резистор 1 кОм, но и при этом номинале ток регулируется достаточно равномерно.

Настройка схемы

Исходная схема (рисунок 1) практически не нуждается в настройке. Переработанная схема (рисунок 2) требует настройки коррекции характера регулирования напряжения. Настройка очень проста.

Подайте на вход напряжение питания (желательно от того источника, который будете брать за основу). Переменный резистор R6 выведите в крайнее положение, при котором напряжение выхода будет максимальным.

Измерьте напряжение на выходе схемы. Переведите движок резистора R6 как Вам кажется точно в среднее положение.

Подстроечным резистором R7 добейтесь на выходе схемы ровно половины того напряжения, которое измеряли при установке на максимум. Собственно – всё.

Данная коррекция не гарантирует абсолютную линейность регулировки, но визуально Вам покажется, что напряжение меняется идеально равномерно.

Применение

Плюс этой схемы заключается в ограничении максимального тока. Её можно использовать для сборки относительно бюджетного варианта источника питания.

Для примера, я использовал в качестве преобразователя сетевого напряжения электронный трансформатор для галогенных ламп. У них есть серьёзный недостаток – отсутствие защиты от перегрузки.

Но поскольку регулирующая схема ограничивает ток нагрузки, то практически защищает схему первичного преобразования от КЗ.

Файлы

Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл – Регулируемый БП 24 В 5 А

Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.

Предупреждение

Показанный в данной статье способ коррекции пригоден далеко не во всех случаях и может быть непреемлем для отдельного ряда задач!

ВНИМАНИЕ!!! Показанный способ коррекции следует использовать с особой осторожностью, зная принцип работы настраиваемого устройства и хорошо представляя, что Вы делаете! В других схемах при определённых положениях движка резисторов могут возникать недопустимые токи, способные вывести из строя резисторы или иные детали рабочего устройства!!! Используя описанный способ коррекции в своём устройстве вы действуете на свой страх и риск, а ещё лучше, представляете, что делаете. Ни какой ответственности за возможные причинённые неисправности Ваших устройств при применении корректирующего резистора по моей схеме лично я не несу.

Данный способ коррекции в конкретной представленной схеме на рисунке 2 абсолютно безопасен при любых номиналах корректирующего резистора и любых положениях движков корректирующего и переменного резисторов R7 и R6.

Пользуйтесь и наслаждайтесь творческим процессом 🙂

Источник: https://volt-info.ru/blok-regulirovaniya-napryazheniya-i-toka-dlya-prostogo-laboratornogo-istochnika-pitaniya

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.