Как сделать тактильный сенсор своими руками

Содержание

Как собрать сенсорный выключатель своими руками: описание и схема сборки

Как сделать тактильный сенсор своими руками

Электронные технологии охватывают обширный спектр бытовой сферы. Ограничений нет практически никаких. Даже простейшие функции выключателя ламп бытового светильника теперь все чаще выполняют сенсорные приборы, а не технологически устаревшие — ручные.

Электронные устройства, как правило, входят в разряд сложных конструкций. Между тем соорудить сенсорный выключатель своими руками, как показывает практика, совсем несложно. Минимального опыта конструирования электронных приборов для этого вполне достаточно.

Конструкция сенсорного выключателя

Термин «сенсорный» несет в себе довольно широкое определение. По сути, под ним следует рассматривать целую группу датчиков, способных реагировать на самые разные сигналы.

Однако применительно к выключателям – приборам, наделенным функционалом коммутаторов, сенсорный эффект чаще всего рассматривают как эффект, получаемый от энергетики электростатического поля.

Такой примерно нужно рассматривать конструкцию выключателя света, созданную на основе механизма сенсора.

Легкое прикосновение подушечкой пальца к поверхности фронтальной панели включает освещение в доме
Обычному пользователю достаточно прикоснуться пальцами руки к такому контактному полю и в ответ будет получен тот же самый результат коммутации, какой дает стандартный привычный клавишный прибор.

Между тем внутреннее устройство сенсорного оборудования существенно отличается от простого ручного выключателя. Обычно такая конструкция выстраивается на основе четырех рабочих узлов:

  • панель защитная;
  • контактный датчик-сенсор;
  • электронная плата;
  • корпус устройства.

Разновидность приборов на базе сенсоров обширна. Выпускаются модели с функциями обычных выключателей. И есть более совершенные разработки – с регуляторами яркости, отслеживающие температуру окружения, поднимающие жалюзи на окнах и прочие.

Конструктивно сенсорный коммутатор выглядит так: 1 – защитная панель из закаленного стекла; 2 – плата размещения сенсорных элементов; 3 – текстолитовая панель с разведенной схемой электроники прибора; 4 – корпус (шасси) выключателя

Мало того, что все эти виды коммутаторов управляются легким прикосновением, так существуют еще и варианты, где управление доступно при помощи дистанционного пульта.

То есть, выключить светильник или убрать яркость свечения ламп прибора пользователь может, не совершая лишних движений в виде перехода от места отдыха к выключателю.

Опции и возможности устройства

Отдельного рассмотрения явно заслуживает разработка сенсорного изделия коммутации, оснащенного таймером. Здесь присутствуют традиционные характеристики, такие как:

  • бесшумность действия;
  • интересный дизайн;
  • безопасное использование.

Помимо всего этого, добавляется еще одна полезная функция – встроенный таймер. С его помощью пользователь получает возможность управлять коммутатором программно. К примеру, задавать время включения и отключения в определённом временном диапазоне.

Уникальный вариант разработки коммутатора с внедренным функционалом таймера. При помощи таких приборов открываются возможности управления освещением в строго заданное время. Экономия электричества очевидна

Как правило, подобные приборы имеют не только таймер, но также аксессуар иного рода – например, акустический датчик.

В этом варианте устройство работает как контроллер движения или шума. Достаточно подать голос либо хлопнуть ладонями и лампы светильника в квартире загорятся ярким светом.

Кстати, на случай слишком высокой яркости существует очередной функционал – диммерная регулировка. Оснащенные диммером коммутаторы сенсорного типа позволяют управлять интенсивностью света.

Модификация сенсорных устройств – акустический коммутатор. Действует по методике несколько иной, но тоже является прибором, где поддерживаются технологии использования сенсоров.

В данном случае, сенсорным элементом выступает чувствительный микрофон

Правда, есть один нюанс для подобных разработок. Диммеры, как правило, не поддерживают использование в светильниках люминесцентных и светодиодных ламп.

Но устранение этого недостатка, скорее всего, вопрос времени.

Правила подключения прибора

Технология монтажа подобных устройств, несмотря на совершенство конструкций, осталась традиционной, как это предусмотрено для стандартных выключателей света.

Обычно на задней части корпуса изделия присутствуют два терминальных контакта – входной и под нагрузку. Обозначаются на устройствах иностранного производства маркерами «L-in» и «L-load».

Техника подключения приборов мало чем отличается от стандарта.

Основные рабочие клеммы: Терминал 1 – линия подключения фазы напряжения; Терминал 2 – линия вывода напряжения под нагрузку 1; Терминал 3 – линия вывода напряжения под нагрузку 2; СОМ – терминал сопряжения приборов

Эти обозначения должны быть понятны даже неискушенному пользователю. Однако в любом случае рекомендуется обращаться к паспорту устройства перед его установкой. Коммутация в схеме прибора осуществляется по фазной линии.

То есть, на вход «L-in» подается фаза — подключается фазный проводник. А с линии «L-load» снимается напряжение для нагрузки — в частности, для лампы светильника.

Между тем конструкции сенсорных выключателей могут предусматривать подсоединение нескольких независимых нагрузок. На таких приборах количество терминалов для подключения увеличивается.

Дополнительно с терминалом входящего напряжения «L-in» присутствуют уже два или даже три отверстия под нагрузку «L-load». Маркируются обычно примерно так: «L1-load», «L2-load» и т. д.

Полный расклад по выключателю: 1 – терминал выходов нагрузки (3 выхода); 2 – защитная панель; 3 – терминал ввода фазы; 4 – пружинный механизм крепления проводников; 5 – сведения о производителе; 6 – пожаробезопасный корпус; 7 – интерфейс двойного контроля; 8 – отверстие под винт

Монтаж сенсорных коммутаторов также фактически не отличается от стандартного варианта. Конструкция выключателей изготовлена под размещение в традиционных подрозетниках. Крепление шасси рабочего механизма прибора, как правило, осуществляется винтами.

Выключатель на сенсорах своими руками

Приобрести выключатель сенсорного типа для домашнего использования, конечно, не проблема. Однако стоимость этих, своего рода интеллектуальных, приборов начинается от 1500-2000 руб. И это цена не самых совершенных конструкций. Поэтому логичным видится вопрос – а можно ли сделать сенсорную коммутацию света своими руками?

Для людей, мало-мальски знакомых с теорией электротехники, сооружение выключателя с применением сенсора — работа вполне выполнимая. Есть масса схемных решений на этот счет.

Схема сенсорного коммутатора на триггере

Многие схемы изготовления приборов подобного действия простые и понятные. Рассмотрим одно из многочисленных решений, которое можно реализовать своими руками для применения в домашних условиях.

Вот такая конструкция оборудования на двух сенсорах оценивается на рынке от 1600 руб. за штуку. Если есть навыки, нечто подобное всегда можно соорудить своими руками. При этом затраты на комплектующие детали примерно в пять раз ниже

Широко распространенная в радиолюбительской практике микросхема серии K561TM2 является главным звеном сенсорного выключателя, собираемого своими руками.

Микросхема К561ТМ – это триггер, состояние которого можно изменять подачей управляющего сигнала на его вход. Это свойство успешно используется для реализации функции коммутатора.

Входная цепь построена с добавлением полевого транзистора V11, который обеспечивает высокую чувствительность по входу и дополнительно хорошо изолирует вход от выхода.

Элемент сенсора Е1 схемы изготавливается в виде металлической пластины и подключается на вход «полевика» через резистор с большим сопротивлением. Так гарантируется безопасность устройства для пользователя в плане возможного поражения электротоком.

Схема прибора для сборки своими руками. Всего лишь одна микросхема, пара транзисторов и один тиристор потребуются для сборки полноценного сенсорного выключателя.

Работает устройство ничуть не хуже промышленного

Выходная часть схемы построена на связке биполярный транзистор VT2 – тиристор тока VS1. Транзистором усиливается сигнал, исходящий с микросхемы, а тиристор исполняет роль коммутатора.

В цепь тиристора включается прибор освещения, которым требуется управлять.

Схема работает так:

  1. Пользователь касается металлической пластины (сенсора).
  2. Статическое электричество поступает на вход VT.
  3. Полевой транзистор переключает триггер.
  4. Выходной сигнал триггера усиливается VT2 и открывает тиристор.
  5. Лампа в цепи тиристора загорается.

Если пользователь прикоснётся к сенсору повторно, все операции повторяются, но с обратным переключением режимов. Все просто и эффективно.

Такое схемное решение допустимо использовать для управления светильниками, где общая мощность ламп накаливания составляет не выше 60 Вт.

Если необходимо коммутировать более мощные приборы света, можно дополнить тиристор объемным радиатором охлаждения. Металл для сенсора рекомендуется применять из серии материалов, хорошо проводящих ток. Оптимальный вариант — посеребренная медь.

Схема на основе инфракрасного датчика

Доступна для самостоятельной сборки схема коммутатора света, где в качестве сенсора применяется ИК-датчик. Здесь также используются доступные и недорогие электронные компоненты.

По степени сложности исполнения этот вариант рассчитан на электронщиков, которые только начинают свою карьеру.

Еще одно схемное решение для изготовления коммутатора сенсорного типа. Также имеет минимум электронных компонентов, но требует тщательной настройки для обеспечения качества работы. Здесь нужен наработанный опыт электронщика

Базовой электроникой в этом решении выступают две микросхемы и следующие элементы:

  • светодиод обычный — HL1;
  • светодиод инфракрасный — HL2;
  • фотоприемник — U1;
  • реле — К1.

На базе микросхемы-инвертора DD1 собран генератор импульсов, а на базе микросхемы DD2 функционирует системный счетчик.

При определенных обстоятельствах, например, когда в зоне действия инфракрасного светодиода появляется биологический объект, срабатывает пара ИК-светодиод и фотоприемник. На базе транзистора VT1 появляется управляющий сигнал, которым включается реле К1. Светильник в цепи К1 загорается.

Если движение объектов в зоне действия инфракрасного датчика не отмечается, через 20 минут простоя счетчик насчитает количество импульсов от мигающего светодиода HL1, достаточное для отключения реле. Светильник отключится. Время ожидания (в этом случае 20 минут) определяется подбором элементов схемы.

Простейшая схема на транзисторах и реле

Максимально упрощенное решение – схема для самостоятельной сборки прибора сенсорного типа, которая представлена ниже.

Упрощенная до минимума схема на построение сенсорного выключателя своими руками. Тем не менее, при условии точного подбора радиоэлементов, обеспечивается вполне эффективная и надежная работа устройства

Здесь допустимо применить практически любой тип реле. Главный критерий – диапазон рабочих напряжений 6-12 вольт и способность коммутировать нагрузку в сети 220 вольт.

Сенсорный элемент изготавливается путем вырезания из листа фольгированного гетинакса. Транзисторы также можно использовать любой серии, аналогичные по параметрам указанным, например, распространенные КТ315.

По сути, эта простая схема представляет обычный усилитель сигнала. При касании поверхности сенсора на базе транзистора VT1 появляется потенциал, достаточный для открывания перехода эмиттер-коллектор.

Следом открывается переход VT2 и напряжение питания подается на катушку реле К1. Этот прибор срабатывает, его контактная группа замыкается, что приводит к включению прибора света.

Выводы и полезное видео по теме

Этот обзор позволяет ближе познакомиться с коммутаторами света, быстро набирающими популярность в обществе.

Сенсорные выключатели, отмеченные продуктовой маркой Livolo, — что это за конструкции и насколько привлекательны они для конечного пользователя. гид по коммутаторам нового типа поможет получить ответы на вопросы:

Завершая тему сенсорных коммутаторов, стоит отметить активное развитие в области разработки и производства выключателей для бытового и промышленного использования. Выключатели света, казалось бы, простейшие конструкции, совершенны уже настолько, что теперь управлять светом можно ой кодовой фразой и при этом получать полную информацию о состоянии атмосферы внутри помещения.

Источник: http://sovet-ingenera.com/elektrika/rozetk-vykl/sensornyj-vyklyuchatel-svoimi-rukami.html

Как обычный монитор сделать сенсорным?

Как сделать тактильный сенсор своими руками

Сегодня сенсорные панели ввода встречаются повсеместно. Они устанавливаются на дисплеи смартфонов и планшетов, тачпады ноутбуков, графические планшеты, платежные терминалы и банкоматы, а также медицинское и промышленное оборудование. Производители делают сенсорные моноблоки и телевизоры, но большинство дисплеев для ПК по-прежнему остаются нечувствительны к касаниям.

 Microsoft Touch Mouse: очень сенсорная, совсем беспроводная

О том, как сделать обычный монитор — сенсорным, наверняка задумывались многие.

Ведь в некоторых операциях (чтение, работа с графикой, редактирование текстов) пролистнуть страницу, выбрать нужный предмет или выделить область на экране пером или пальцем гораздо проще, быстрее и удобнее, чем водить курсор или крутить колесо мыши.

С первого взгляда кажется, что эта затея – фантастика, и воплотить ее сложно. Но на самом деле все немного проще. Как сделать монитор сенсорным самостоятельно – расскажет данный материал.

Немного теории

Сенсорные поверхности экранов конструкционно представляют собой отдельный элемент, напрямую не связанный с матрицей дисплея.

Конечно, в последних поколениях смартфонов и планшетов используются так называемые OGS панели, у которых чувствительный элемент встроен между пикселями, но управление им все равно осуществляется по отдельной шине. Всего же существует три типа тачскринов, каждый со своими особенностями.

Резистивный

Резистивная технология построения сенсорных экранов – самая простая и дешевая. По принципу работы такие тачскрины родственны компьютерным клавиатурам. На двух слоях прозрачной подложки нанесены дорожки из почти прозрачного токопроводящего материала.

Эти два слоя расположены друг на друге с зазором в несколько микрометров. Верхний обязательно гибкий и при касании пальца прогибается, замыкая дорожки. Чем дальше находится место замыкания – тем больший путь проходит ток и тем выше сопротивление.

По его величине (с точностью до ома) контроллер сенсора вычисляет, в каком месте произошло нажатие.

Резистивные сенсорные экраны дешевы, просты, реагируют на любой предмет, но недостаточно надежны (вывести тачскрин из строя может небольшой порез) и имеют ограниченную прозрачность (под определенным углом даже становятся видны дорожки проводников).

Емкостный

Емкостный тачскрин – самый распространенный в наше время (состоянием на 2016 год). Он более совершенен и надежен. Количество слоев сократилось до одного, его толщина стала меньше.

На поверхности сенсорного стекла или пленки наносится сетка прозрачных проводников, отличающихся низким сопротивлением.

Человеческое тело плохо проводит электричество и способно накапливать электрический заряд, потому при касании пальца к стеклу происходит небольшая утечка тока, место которой определяет контроллер.

Волновой

В волновом сенсорном экране для регистрации прикосновений используются акустические (ультразвук, технология ПАВ) или световые (инфракрасные, ультрафиолетовые, технология ПСВ) волны. По периметру экрана устанавливается рамка, объединяющая излучатель и регистратор. Когда палец касается поверхности – он поглощает и частично отражает волну, а датчики регистрируют место.

.

Экраны ПАВ и ПСВ надежны, абсолютно прозрачны (нет сетки электродов), имеют неисчерпаемый теоретический ресурс (в реальности зависит от качества компонентов), при наличии защитной рамки сам сенсор невозможно повредить, а применение бронестекла делает неуязвимой и матрицу экрана.

Поэтому они часто применяются в банкоматах, платежных терминалах, промышленных станках и медицинском оборудовании. Но точность определения координат пальца у них посредственная. Также волновые тачскрины требуют регулярной протирки (грязь на стекле вызывает фантомные реакции).

Есть и другие виды сенсоров для дисплеев, но они распространены гораздо меньше. Кроме того, эти методы трудно реализовать в домашних условиях, потому они не рассматриваются.

Применение сенсоров на практике

В применении к сенсорным мониторам востребованы все три технологии. Резистивный тип широко использовался ранее, но встречается и сейчас. Именно он интересен в плане того, как обычный монитор сделать сенсорным, но об этом чуть ниже.

Емкостные сенсоры применяются почти во всех современных дисплеях, изначально сенсорных.  Волновые тачскрины, как было сказано выше, используются в банковском, промышленном, медицинском и ином специфическом оборудовании.

Благодаря предприимчивым китайцам они также интересны при переделке обычного монитора в сенсорный.

Как сделать монитор сенсорным

Стоит сразу отметить, что переделка обычного монитора в сенсорный емкостный отпадает: такие тачскрины сравнительно дороги, специфичны и отдельно почти не встречаются. А вот резистивная и волновая технологии куда интереснее в этом плане. Еще стоит упомянуть чисто световой (не на ПСВ, а инфракрасный) вариант.

Способ 1: Световой

Первый способ самый простой и доступный, но требует определенных навыков и желания поработать.

Перед тем, как сделать монитор сенсорным, нужно запастись веб-камерой, инфракрасным диодом (как в пульте от телевизора) кусочком фотопленки (непроявленной), батарейкой и корпусом для самодельного стилуса (подойдет, например, лазерная указка), а также программой Community Core Vision. Что со всем этим добром делать – подробнее и по пунктам ниже.

  1. Установить камеру так, чтобы монитор полностью оказался в поле зрения объектива. Ее нужно закрепить, чтобы избежать смещения и нарушения настроек в дальнейшем.
  2. Сделать самодельный инфракрасный стилус, установив диод в корпус и подпаяв тонкие проводки от батареек к его ножкам. Лазерная указка в этом плане хороша тем, что у нее есть корпус с местом для батареек и кнопка, которая позволит подавать питание на диод только в процессе работы. Работоспособность поделки можно проверить, направляя диод в камеру: глаз человека не видит ИК-излучение, а цифровые камеры видят.
  3. Вырезать из фотопленки кружок по размеру объектива веб-камеры и наклеить его поверх него. Фотопленка (непроявленная) не пропускает видимое излучение, а вот для инфракрасных лучей она прозрачна. Этот защитный диск послужит экраном, который позволит отфильтровывать видимый свет, для защиты от фантомных нажатий.
  4. Скачать и инсталлировать программу Community Core Vision или TouchLib. Откалибровать ПО, чтобы камера улавливала только точку от ИК-диода на стилусе. Затем произвести тонкую калибровку, чтобы совпадала точка нажатия и место срабатывания.

Перед тем, как обычный монитор сделать сенсорным по данному методу, нужно убедиться, что уровень технических навыков достаточен, а обстановка не препятствует воплощению идеи. Ведь веб-камеру требуется точно позиционировать, и для этого нужно место на столе, которое есть не у всех. Кроме того, небольшое смещение ее или экрана вынуждает настраивать все заново.

Способ отличается дешевизной: из оборудования покупать придется только самую дешевую камеру рублей за 500 (у большинства и так имеется), ИК-диод (можно вытащить из разбитого пульта), лазерную указку (можно вместо нее взять маркер или другую тонкую трубку), батарейки («мини-пальчики» или «таблетки»). Сложнее всего с фотопленкой: большинство людей пленочные «мыльницы» последний раз держало в руках больше 10 лет назад. Кроме того, из недостатков у способа – сложность настройки, неустойчивость конструкции, не самый высокий уровень удобства.

Некоторые китайские производители предлагают готовые решения этого типа, позволяющие сделать монитор сенсорным. Такие продукты представляют собой специальную широкоугольную веб-камеру, закрепляемую на дисплее, и стилус. Такой вариант не лишен упомянутых недостатков, зато смотрится привлекательно и не требует навыков работы с самоделками.

Способ 2: Волновой

В продаже встречаются готовые сенсорные панели, работающие по принципу поверхностно-световых (ПСВ) и поверхностно-акустических (ПАВ) волн.

Они представляют собой стекло с рамкой, к которому подключен специальный контроллер с интерфейсом USB или COM (RS-232).

Такие решения предназначены, в первую очередь, для создания терминалов и спецоборудования, но никто не запрещает использовать их дома.

Процесс переделки дисплея с ними предельно прост.

  1. Перед тем, как сделать монитор сенсорным, нужно протереть его микрофиброй со специальным чистящим средством или универсальным стеклоочистителем. Важно помнить: если экран имеет антибликовое покрытие – нельзя использовать для этого средства, содержащие нашатырь (аммиак), так как они смывают этот слой!
  2. После этого на экран накладывается сенсорное стекло, которое закрепляется входящими в комплект приспособлениями или сажается на качественный двусторонний скотч (но лучше все-таки прикрутить).
  3. Дальнейшая процедура настройки заключается в установке фирменного драйвера и другого ПО (поставляется на диске с сенсором или скачивается с сайта производителя) и калибровке тачскрина.

Основной недостаток подобной переделки монитора в сенсорный – относительная дороговизна. Новый сенсор стоит от нескольких тысяч – до десятков тысяч рублей, в зависимости от диагонали.

Кроме того, найти нужный размер на современные широкоформатные матрицы большой диагонали нередко сложно. Связанно это с тем, что узкоформатные (4:5 или 3:4) экраны имеют лучшее соотношение диагонали и полезной площади, поэтому для них такие тачскрины выпускают чаще.

Кроме того, стекло с рамкой может портить эстетический вид монитора, не вписываясь в его экстерьер.

Способ 3: Резистивный

По соотношению цены, эффективности и простоты применения наиболее предпочтителен резистивный тачскрин. Китайские производители создают специальные сенсорные пленки разного уровня точности, долговечности и функциональности, с разными размерами.

Источник: https://blog.aport.ru/kak-obychnyj-monitor-sdelat-sensornym/

Емкостной сенсорный датчик своими руками

Как сделать тактильный сенсор своими руками

Емкостной датчик – это один из типов бесконтактных датчиков, принцип работы которого основан на изменении диэлектрической проницаемости среды между двух обкладок конденсатора. Одной обкладкой служит сенсорный датчик схемы в виде металлической пластины или провода, а второй – электропроводящее вещество, например, металл, вода или тело человека.

При разработке системы автоматического включения подачи воды в унитаз для биде возникла необходимость применения емкостного датчика присутствия и выключателя, обладающих высокой надежностью, устойчивостью к изменению внешней температуры, влажности, пыли и питающему напряжению.

Хотелось также исключить необходимость прикосновения человека с органами управления системы. Предъявляемые требования могли обеспечить только схемы сенсорных датчиков, работающих на принципе изменения емкости.

Готовой схемы удовлетворяющей необходимым требованиям не нашел, пришлось разработать самостоятельно.

Получился универсальный емкостной сенсорный датчик, который не требует настройки и реагирует на приближающиеся электропроводящие предметы, в том числе и человека, на расстояние до 5 см. Область применения предлагаемого сенсорного датчика не ограничена. Его можно применять, например, для включения освещения, систем охранной сигнализации, определения уровня воды и в многих других случаях.

Электрические принципиальные схемы

Для управления подачей воды в биде унитаза понадобилось два емкостных сенсорных датчика. Один датчик нужно было установить непосредственно на унитазе, он должен был выдавать сигнал логического нуля при присутствии человека, а при отсутствии сигнал логической единицы. Второй емкостной датчик должен был служить включателем воды и находиться в одном из двух логических состояний.

При поднесении к сенсору руки датчик должен был менять логическое состояние на выходе – из исходного единичного состояния переходить в состояние логического нуля, при повторном прикосновении руки из нулевого состояния переходить в состояние логической единицы. И так до бесконечности, пока на сенсорный включатель поступает разрешающий сигнал логического нуля с сенсорного датчика присутствия.

Схема емкостного сенсорного датчика

Основой схемы емкостного сенсорного датчика присутствия является задающий генератор прямоугольных импульсов, выполненный по классической схеме на двух логических элементах микросхемы D1.1 и D1.2.

Частота генератора определяется номиналами элементов R1 и C1 и выбрана около 50 кГц. Значение частоты на работу емкостного датчика практически не влияет.

Я менял частоту от 20 до 200 кГц и влияния на работу устройства визуально не заметил.

С 4 вывода микросхемы D1.2 сигнал прямоугольной формы через резистор R2 поступает на входы 8, 9 микросхемы D1.3 и через переменный резистор R3 на входы 12,13 D1.4. На вход микросхемы D1.

3 сигнал поступает с небольшим изменением наклона фронта импульсов из-за установленного датчика, представляющего собой кусок провода или металлическую пластину. На входе D1.4, из за конденсатора С2, фронт изменяется на время, необходимое для его перезаряда.

Благодаря наличию подстроечного резистора R3, есть возможность фронты импульса на входе D1.4, выставить равным фронту импульса на входе D1.3.

Если приблизить к антенне (сенсорному датчику) руку или металлический предмет, то емкость на входе микросхемы DD1.3 увеличится и фронт поступающего импульса задержатся во времени, относительно фронта импульса, поступающего на вход DD1.4. чтобы «уловить» эту задержку про инвертированные импульсы подаются на микросхему DD2.

1, представляющую собой D триггер, работающий следующим образом. По положительному фронту импульса, поступающего на вход микросхемы C, на выход триггера передается сигнал, который в тот момент был на входе D. Следовательно, если сигнал на входе D не изменяется, поступающие импульсы на счетный вход C не оказывают влияния на уровень выходного сигнала.

Это свойство D триггера и позволило сделать простой емкостной сенсорный датчик.

Когда емкость антенны, из за приближения к ней тела человека, на входе DD1.3 увеличивается, импульс задерживается и это фиксирует D триггер, изменяя свое выходное состояние. Светодиод HL1 служит для индикации наличия питающего напряжения, а HL2 для индикации приближения к сенсорному датчику.

Схема сенсорного включателя

Схему емкостного сенсорного датчика можно использовать и для работы сенсорного включателя, но с небольшой доработкой, так как ему необходимо не только реагировать на приближение тела человека, но и оставаться в установившемся состоянии после удаления руки. Для решения этой задачи пришлось к выходу сенсорного датчика добавить еще один D триггер, DD2.2, включенный по схеме делителя на два.

Схема емкостного датчика была немного доработана.

Для исключения ложных срабатываний, так как человек может подносить и удалять руку медленно, из-за наличия помех датчик может выдавать на счетный вход D триггера несколько импульсов, нарушая необходимый алгоритм работы включателя. Поэтому была добавлена RC цепочка из элементов R4 и C5, которая на небольшое время блокировала возможность переключение D триггера.

Триггер DD2.2 работает так же, как и DD2.1, но сигнал на вход D подается не с других элементов, а с инверсного выхода DD2.2. В результате по положительному фронту импульса, приходящего на вход С сигнал на входе D изменяется на противоположный.

Например, если в исходном состоянии на выводе 13 был логический ноль, то поднеся руку к сенсору один раз, триггер переключится и на выводе 13 установится логическая единица.

При следующем воздействии на сенсор, на выводе 13 опять установится логический ноль.

Для блокировки включателя при отсутствии человека на унитазе, с сенсора на вход R (установка нуля на выходе триггера вне зависимости от сигналов на всех остальных его входах) микросхемы DD2.

2 подается логическая единица.

На выходе емкостного выключателя устанавливается логический ноль, который по жгуту подается на базу ключевого транзистора включения электромагнитного клапана в Блоке питания и коммутации.

Резистор R6, при отсутствии блокирующего сигнала с емкостного датчика в случае его отказа или обрыва управляющего провода, блокирует триггер по входу R, тем самым исключает возможность самопроизвольной подачи воды в биде. Конденсатор С6 защищает вход R от помех. Светодиод HL3 служит для индикации подачи воды в биде.

Конструкция и детали емкостных сенсорных датчиков

Когда я начал разрабатывать сенсорную систему подачи воды в биде, то наиболее трудной задачей мне казалась разработка емкостного датчика присутствия. Обусловлено это было рядом ограничений по установке и эксплуатации.

Не хотелось, чтобы датчик был механически связан с крышкой унитаза, так как ее периодически надо снимать для мойки, и не мешал при санитарной обработке самого унитаза. Поэтому и выбрал в качестве реагирующего элемента емкость.

По выше опубликованной схеме сделал опытный образец. Детали емкостного датчика собраны на печатной плате, плата размещена в пластмассовой коробке и закрывается крышкой.

Для подключения антенны в корпусе установлен одноштырьковый разъем, для подачи питающего напряжения и сигнала установлен четырех контактный разъем РШ2Н.

Соединена печатная плата с разъемами пайкой медными проводниками в фторопластовой изоляции.

Сенсорный емкостной датчик собран на двух микросхемах КР561 серии, ЛЕ5 и ТМ2. Вместо микросхемы КР561ЛЕ5 можно применить КР561ЛА7. Подойдут и микросхемы 176 серии, импортные аналоги.

Резисторы, конденсаторы и светодиоды подойдут любого типа.

Конденсатор С2, для стабильной работы емкостного датчика при эксплуатации в условиях больших колебаниях температуры окружающей среды нужно брать с малым ТКЕ.

Установлен датчик под площадкой унитаза, на которой установлен сливной бачек в месте, куда в случае протечки из бачка вода попасть не сможет. К унитазу корпус датчика приклеен с помощью двустороннего скотча.

Антенный датчик емкостного сенсора представляет собой отрезок медного многожильного провода длинной 35 см в изоляции из фторопласта, приклеенного с помощью прозрачного скотча к внешней стенке чаши унитаза на сантиметр ниже плоскости очка. На фотографии сенсор хорошо виден.

Для настойки чувствительности сенсорного датчика необходимо после его установки на унитаз, изменяя сопротивление подстроечного резистора R3 добиться, чтобы светодиод HL2 погас.

Далее положить руку на крышку унитаза над местом нахождения сенсора, светодиод HL2 должен загораться, если руку убрать, потухнуть.

Так как бедро человека по массе больше руки, то при эксплуатации сенсорный датчик, после такой настройки, будет работать гарантировано.

Конструкция и детали емкостного сенсорного включателя

Схема емкостного сенсорного включателя имеет больше деталей и для их размещения понадобился корпус большего размера, да и по эстетическим соображениям, внешний вид корпуса, в котором был размещен сенсорный датчик присутствия не очень подходил для установки на видном месте. Внимание на себя обратила настенная розетка rj-11 для подключения телефона. По размерам она подходила и имела хороший внешний вид. Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя.

Для закрепления печатной платы в основании корпуса была установлена короткая стойка и к ней с помощью винта прикручена печатная плата с деталями сенсорного выключателя.

Датчик емкостного сенсора сделал, приклеив ко дну крышки розетки клеем «Момент» лист латуни, предварительно вырезав в них окошко для светодиодов. При закрывании крышки, пружина (взята от кремневой зажигалки) соприкасается с латунным листом и таким образом обеспечивается электрический контакт между схемой и сенсором.

Крепится емкостной сенсорный включатель на стену с помощью одного самореза. Для этого в корпусе предусмотрено отверстие. Далее устанавливается плата, разъем и закрепляется защелками крышка.

Настройка емкостного выключателя практически не отличается от настройки сенсорного датчика присутствия, описанного выше. Для настойки нужно подать питающее напряжение и резистором отрегулировать, чтобы светодиод HL2 загорался, когда к датчику подносится рука, и гас, при ее удалении.

Далее нужно активировать сенсорный датчик и поднести и удалить руку к сенсору выключателя. Должен мигнуть светодиод HL2 и загореться красный светодиод HL3. При удалении руки красный светодиод должен продолжать светиться.

При повторном поднесении руки или удалении тела от датчика, светодиод HL3 должен погаснуть, то есть выключить подачу воды в биде.

Универсальная печатная плата

Представленные выше емкостные датчики собраны на печатных платах, несколько отличающихся от печатной платы приведенной ниже на фотографии.

Это связано с объединением обеих печатных плат в одну универсальную. Если собирать сенсорный включатель, то необходимо только перерезать дорожку под номером 2.

Если собирать сенсорный датчик присутствия, то удаляется дорожка номер 1 и не все элементы устанавливаются.

Не устанавливаются элементы, необходимые для работы сенсорного включателя, но мешающие работе датчика присутствия, R4, С5, R6, С6, HL2 и R4. Вместо R4 и С6 запаиваются проволочные перемычки. Цепочку R4, С5 можно оставить. Она не будет влиять на работу.

Ниже приведен рисунок печатной платы для накатки при использовании термического метода нанесения на фольгу дорожек.

Достаточно распечатать рисунок на глянцевой бумаге или кальке и шаблон готов для изготовления печатной платы.

Безотказная работа емкостных датчиков для сенсорной системы управления подачи воды в биде подтверждена на практике в течении трех лет постоянной эксплуатации. Сбоев в работе не зафиксировано.

Однако хочу заметить, что схема чувствительна к мощным импульсным помехам. Мне приходило письмо о помощи в настройке. Оказалось, что во время отладки схемы рядом находился паяльник с тиристорным регулятором температуры. После выключения паяльника схема заработала.

Еще был такой случай. Емкостной датчик был установлен в светильник, который подключался в одну розетку с холодильником. При его включении свет включался и при повторном выключался. Вопрос был решен подключением светильника в другую розетку.

Приходило письмо об успешном применении описанной схемы емкостного датчика для регулировки уровня воды в накопительном баке из пластика. В нижней и верхней части было приклеено силиконом по датчику, которые управляли включением и выключением электрического насоса.

Источник: https://YDoma.info/samodelki/bide-dlya-unitaza/samodelki-bide-dlya-unitaza-sensornyj-datchik.html

Как собрать сенсорный выключатель своими руками

Как сделать тактильный сенсор своими руками

> Выключатели и розетки > Как собрать сенсорный выключатель своими руками

Довольно часто приходится менять обычные выключатели электрических приборов на новые из-за их быстрого износа. На смену им появились более надежные сенсорные выключатели (СВ). Принцип их работы максимально простой. Устройства можно изготовить своими руками. На фото ниже изображен выключатель с сенсором, расположенным сверху и индикаторным светодиодом снизу.

Внешний вид сенсорного выключателя

Для включения света достаточно легкого прикосновения к чувствительному элементу. Сенсорные выключатели обычно используют для управления светом, электрическими карнизами и другими устройствами небольшой мощности.

Преимущества СВ

  1. Удобство по сравнению с клавишным выключателем, который еще не всегда сразу переключается. Устройства совершенно бесшумные и нет необходимости прилагать усилия для включения.
  2. Можно выбрать стильные модели, которые украсят помещения.
  3. Гальваническая развязка схемы делает устройство совершенно безопасным.

    К сенсору можно прикасаться мокрыми руками, выключатель герметичен.

  4. Отсутствие механизмов, которые могут сломаться. Вся схема состоит из электронных элементов.
  5. Возможность совмещения с дистанционным управлением светом, а также создания нескольких каналов включения в одном устройстве.

  6. Возможность изготовления своими руками.

Принцип действия

Как собрать светодиодные светильники своими руками

Любой сенсорный выключатель функционально разделен на три части:

  • чувствительный элемент (сенсор), реагирующий на прикосновение или приближение пальцев;
  • схема на полупроводниках, усиливающая слабый электрический сигнал от сенсора;
  • коммутатор (реле или тиристор), обеспечивающий включение и отключение нагрузки.

На рисунке изображена схема сенсорного выключателя с напряжением питания до 16 В. Она представляет собой простой полупроводниковый каскадный усилитель. Применяется для включения небольших нагрузок. Статического электричества в человеческом теле достаточно, чтобы открыть первый транзистор каскада, если прикоснуться пальцем к оголенному проводнику, подключенному к базе.

Схема простого сенсорного выключателя из трехкаскадного усилителя

В качестве нагрузки на выходе третьего каскада подключен светодиод, служащий для демонстрации работы схемы. В выключателе вместо него устанавливается реле, для которого можно подобрать более мощный транзистор. Сенсором может служить медная фольга.

При прикосновении к сенсору открывается первый каскад, затем сигнал усиливается на следующих двух и на выходе становится равным 6 В. Его достаточно для срабатывания реле, которое своим контактом производит включение лампы (на схеме не показано).

Схемы

На рисунке изображена схема двухкаскадного сенсорного выключателя, который можно сделать своими руками.

Схема выключателя на двух транзисторах

При касании к сенсору Е1 напряжение от тела человека поступает на усилитель через конденсатор С1. В качестве нагрузки подключено реле К1, которое срабатывает при очередном прикосновении, включая или отключая свои силовые контакты питания лампы. Диод VD1 предназначен для защиты транзистора VT2 от перепадов напряжения, а конденсатор С2 сглаживает пульсации.

Реле подбирается на ток срабатывания 15-20 мА (тип РЭС55А или РЭС55Б). Возможно, величину сопротивления резистора R1 придется изменить, чтобы реле надежно работало. Сначала вместо него подключается переменный резистор на 50 Ом и подстраивается, пока не заработает реле от сенсора. Затем замеряется величина сопротивления и находится постоянный резистор с соответствующим номиналом.

В качестве сенсора применяется фольгированный текстолит, медная пластина или металл с антикоррозионным покрытием. Его несложно изготовить своими руками. Если сенсор устанавливают на расстоянии от платы, подводящий провод следует экранировать.

Источник напряжения – это батарейка на 9 В или блок питания от сети, изготовленный своими руками. Вполне может подойти зарядное устройство.

Схему выключателя лучше собрать на плате, но можно и спаять проводами, поскольку деталей немного. Для их соединения между собой применяются проводки длиной 2-3 см. Для подключения к контакту сенсора и реле длина проводников составит не более 10 см.

При пайке важно не перегреть транзисторы и конденсатор на 0,22 мкф.

Бестрансформаторное питание от переменной сети 220 В не требует отдельного источника. Устройство на симисторе достаточно чувствительно и надежно работает.

На схеме рисунка ниже гальванической развязки от осветительной сети нет, но защитой сенсора от высокого напряжения являются резисторы R1 и R2 общим сопротивлением 12 мОм, а также полевой транзистор VT1 c большим сопротивлением перехода сток-исток-затвор. Чувствительность схемы подбирается изменением сопротивления R2.

В подобных схемах, когда они под напряжением, прикосновение допускается только к сенсору Е1.

Схема сенсорного электронного выключателя на симисторе

Триггер построен на интегральной микросхеме К561ТМ2 (DD1). С его выхода 1 сигнал поступает на базу транзисторного усилителя тока VT2, эмиттер которого соединен с управляющим выводом симистора VS1.

Как только на нем появляется напряжение 3 В, симистор открывается и включает источник света.

При следующем прикосновении к сенсору триггер меняет состояние и на выходе 1 появляется противоположный сигнал, выключающий лампу EL1.

Мощность нагрузки для данной схемы составляет не более 60 В. Если ее потребуется увеличить, симистор устанавливается на радиатор.

Существуют схемы с функцией светорегулирования. При кратковременных прикосновениях к сенсору лампа будет загораться и гаснуть.

Если держать руку на чувствительном элементе, яркость будет расти, а затем уменьшаться. Подобное устройство удобно применять для настольной лампы за рабочим столом.

Можно настроить определенную освещенность, убрав руку с выключателя. На рисунке изображена схема сенсорного регулятора.

Схема сенсорного светорегулятора

Сигнал подается от чувствительного элемента на микросхему К145АП2, а она управляет симистором VS1 через транзистор VT1. Питание подается от сети 220 В. Светодиод HL1 является индикатором напряжения и подсвечивает сенсор в темноте.

Стабилитрон следует подобрать так, чтобы на конденсаторе С5 напряжение, подаваемое на входы 4,5 микросхемы, было в пределах 14-15 В. При его меньших значениях лампа мерцает.

Схема выключателя.

Проходной выключатель двухклавишный: как подключить своими руками

Как собрать сенсорный выключатель по представленной схеме, можно узнать из видео ниже.

Обычные выключатели постепенно вытесняются сенсорными, благодаря своим преимуществам.  После их установки в квартире уже не хочется возвращаться к старой конструкции. Устройства можно изготавливать своими руками, что позволяет экономить денежные средства.

Источник: https://elquanta.ru/vyklyuchateli/sobrat-sensornyjj-vyklyuchatel.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.