Что такое KV4KC (маркировка на радиоэлементе) и чем его заменить ?

Содержание

Маркировка радиоэлементов (импортных, активных)

Что такое  KV4KC (маркировка на радиоэлементе) и чем его заменить ?

В последние годы производители полупроводников оптимизировали номенклатуру своих изделий, и количество предлагаемых устройств несколько сократилось.

Однако, это трудно заметить при просмотре каталогов компонентов, где количество различных устройств только одного типа может составлять не менее нескольких сотен.

Для крупного, профессионального поставщика в каталогах будет доступно несколько тысяч полупроводников.

Именно поэтому при подборе элементов даже опытным радиоинженерам следует проявлять осторожность, потому что легко ошибиться, когда имеется так много компонентов одного типа, многие из которых имеют схожую маркировку. Иначе вы рискуете купить неправильный прибор/компонент или правильный компонент, но неправильную его версию.

Анатомия маркировки

Ошибок не будет, если вы понимаете основную анатомию маркировки полупроводникового компонента. Конечно, всех проблем это не решит, но три составные части маркировки надо знать обязательно.

Обычно в маркировке есть префикс, который предоставляет некоторую базовую информацию об устройстве, но используемые методы кодирования очень просты и никогда не рассказывают вам о конкретном устройстве. Однако при покупке компонентов префикс может быть (и довольно часто) очень важен.

Вторая часть является основной (как бы серийный номер изделия) и имеет три или четыре цифры.

Третья часть – суффикс, предоставляет некоторую дополнительную информацию об устройстве, но он не всегда присутствует, особенно у транзисторов и диодов. Он необходим только при наличии двух или более разных версий устройства.

Опять же, это важно при покупке компонентов, и вы можете легко получить неправильную версию, если у устройства будет неправильный суффикс. Есть много примеров идентичных устройств, которые имеют разные суффиксы.

Менеджмент «среднего звена»

Основная часть – это наиболее простая часть маркировки полупроводниковых элементов. Первое устройство такого типа, которое должно быть зарегистрировано, может иметь номер «0001», следующий — «0002» и т. д.

На практике это работает не совсем так, и некоторые производители транзисторов начинают маркировку своих изделий с «100», а не «001». Но это и не важно.

Существенным недостатком такого метода маркировки является наличие большего числа полупроводниковых приборов, чем доступных номеров (3-х или 4-х значных).

Для примера, устройство, промаркированное «555», может быть популярной интегральной схемой таймера (ИС), транзистором с европейским типом номера и, возможно, чем-то другим, например, другим типом интегральной схемы или оптическим устройством.

Таким образом, базовая числовая маркировка важна, но сама по себе недостаточна для точной идентификации элемента.

Чтобы выбрать подходящий элемент нужно обязательно обращать внимание и на другие части маркировки.

Начать с начала

Первая часть маркировки (префикс) выполняет две функции, и для европейских производителей эта часть маркировки даёт некоторую базовую информацию о типе устройства.

Она чем-то похожа и берёт истоки у маркировки вакуумных ламп, но применительно к  твёрдотельным устройствам первая буква указывает на тип используемого полупроводникового материала или тип интегральной схемы:

Первый символТип элемента
AГерманий
BКремний
CАрсенид галия
FИнтегральная логическая схема
RФотоэлемент
SЦифровая интегральная схема
TЛинейная интегральная схема

Вторая буква указывает тип устройства, так как в таблице 2.

Второй символТип прибора
AСигнальный диод
BВарикап
CМаломощный транзистор для аудио
DМощный транзистор для аудио
EТуннельный диод
FМаломощный высокочастотный транзистор
LМощный высокочастотный транзистор
PФототранзистор
SТранзистор для ключевых схем
TТиристор
YФильтр
ZСтабилитрон

Заметим, что элементы для промышленных применений имеют в маркировке три буквы.

Для примера, BC550 представляет собой небольшой кремниевый транзистор для аудио или других низкочастотных приложений, в то время как BF181 представляет собой маломощный кремниевый транзистор для использования на радиочастотах.

На один меньше

Простые полупроводники американских производителей маркируются по системе JEDEC (Joint Electron Devices Engineering Council) и имеют префикс, состоящий из цифры, за которой следует буква N .

Цифра на единицу меньше количества выводов, которое имеет устройство, что на практике означает 1 — для диодов и стабилитронов (т.е.

два вывода), «2» для обычных транзисторов и «3» или более для специальных устройств, таких как двухзатворные МОП-транзисторы и прочее.

Таким образом, 1N4148 является устройством, которое имеет два вывода, что обычно означает диод. Это на самом деле небольшой диод, но эта информация не отображается в маркировке типа JEDEC, которая получается менее информативна, чем европейская Pro Electron.

Сейчас не часто встречается маркировка японской системы JIS (Японские промышленные стандарты), но первая цифра в ней снова является числом, которое на один меньше, чем количество выводов у элемента. Затем следуют две буквы, которые идентифицируют общий тип устройства:

Маркировка Тип устройства
SAВысокочастотный PNP транзистор
SBВысокочастотный NPN транзистор
SCPNP транзистор для аудио
SDNPN транзистор для аудио
SEДиод
SJP-канальный полевой транзистор (в том числе и MOSFET)
SKN-полевой транзистор (в том числе и MOSFET)
SRФильтр

Как нетрудно заметить, для обычных типов транзисторов первые две цифры всегда получаются «2S» и, возможно, они немного бесполезны, поэтому эти две цифры часто опускаются при маркировке элементов.

Производитель

Большинство электронных компонентов маркируются согласно перечисленным стандартным методам. Но бывают и исключения. (рис.1).

Здесь префикс TIP этого силового транзистора указывает, что он является мощным транзистором в пластиковом корпусе от Texas Instruments. Однако впереди производитель нанёс логотип MOSPEC, поэтому префикс стал вторым элементом маркировки.

Такое часто встречается в маркировке интегральных микросхем, где к стандартной маркировке типа производитель добавляет свою кодировку.

Рис.2. Эта интегральная схема имеет обозначение «LM» в качестве префикса, что указывает на то, что это изделие фирмы National Semiconductor.

Как несколько примеров: префиксы «CA» и «MC» используются соответственно фирмы KCA и Motorola. Из-за того, что один и тоже элемент может выпускаться разными производителями и маркироваться по своему, возникают трудности с идентификацией элементов.

Конечно, наличие на рынке нескольких производителей порождает конкуренцию, что, как следствие, снижает цены на радиоэлементы. Для нас это хорошо. С другой стороны, каждый производитель вносит что-то своё в маркировку элементов, тем самым затрудняет нам их идентификацию.

При просмотре каталога интегральных микросхем, вероятно, лучше всего игнорировать префикс и сосредоточиться на двух других элементах маркировки. Тем более, что часто поставщики компонентов не гарантируют поставку устройств от конкретных производителей.

Если вы заказываете (скажем) MC1458CP. но вам прислали СА1458Е. или наоборот, нет повода беспокоиться. Обе микросхемы являются 1458 — двойными операционными усилителями, и нет никакой практической разницы между ними.

MC1458CP производится Motorola или Texas Instruments, а СА1458Е – фирмой RCA.

Полный список префиксов производителей смотрите на сайте: https://en.wikibooks.org/wiki/Practical_Electronics/Manufacturers_Prefix

Многообразие вариантов

Большинство транзисторов не имеют суффикса в маркировке.

Там, где он присутствует, суффикс обычно представляет собой одну букву и указывает на коэффициент усиления или другой какой-то параметр.

Обычно буквой «А» маркируются транзисторы с низким коэффициентом усиления, буквой «В» со средним и буквой «С» с высоким коэффициентом усиления. Конкретные значения или диапазон указывается в даташите на элемент.

Поэтому, если на схеме указан транзистор с суффиксом «В», заменить его безопасно можно на транзистор с суффиксом «С». При замене на элемент с суффиксом «А» может не хватить его усиления и устройство откажется работать или будет часто уходить в перегрузку.

Бывают ситуации (к счастью, довольно редкие), когда суффикс указывает на расположение выводов элемента. Для транзисторов это обозначения «L» или «K». Большинство транзисторов имеют одну типовую конфигурацию выводов. Но если ваше устройство не работает по непонятным причинам, проверьте, не попались ли вам транзисторы с такими суффиксами.

С интегральными микросхемами ситуация противоположная. Тут производители часто используют суффикс для обозначения типа корпуса. И если вы при заказе проигнорируете суффикс или укажите неверный, вы рискуете получить микросхему в таком исполнении, которое будет не совместимо с вашим вариантом печатной платы.

Ситуация осложняется тем, что стандартов на суффиксы нет и каждый производитель использует свои типы маркировки. Так что будьте предельно внимательны при заказе микросхем!

Маркировка частоты

Некоторые интегральные схемы имеют суффикс, который указывает на тактовую частоту устройства. Эта система используется совместно с памятью и некоторыми другими компьютерными чипами, такими как микроконтроллеры и микропроцессоры.

В большинстве случаев дополнительные цифры на самом деле являются расширением основной части маркировки, а не суффиксом, так как в маркировке суффикс будет присутствовать и, как говорилось выше, скорее всего будет обозначать тип корпуса.

Некоторые микроконтроллеры PIC, например, имеют в обозначении что-то вроде « -20», добавленное к базовому типу номера. Дополнительная маркировка указывает максимальную тактовую частоту (в мегагерцах) для чипа.

Вы можете вполне безопасно использовать элемент с более высокой тактовой частотой, чем тот, который указан в списке компонентов.

Однако, более быстрые версии, как правило, значительно дороже, чем медленные.

И технологии..

Но, увы, не всё так просто. Особенно с интегральными микросхемами.

74-я серия (TTL) логических интегральных схем была основной, прародительницей других серий и первоначально маркировалась по изложенным правилам: префикс-основная часть-суффикс.

При маркировке последующих, улучшенных серий, от стандартной маркировки производители начали отклоняться — между префиксом «74» и базовым номером стали добавлять маркировку, обозначающую семейство микросхем:

Эта маркировка может указывать на технологию изготовления и, как следствие, на скорость (частоту), напряжения питания и другие параметры.

Поэтому исходное устройство 7420 сегодня может маркироваться как  74HC20, 74MCT20 и 74LS20. Это всё различные семейства микросхем, которые несовместимы между собой. Поэтому и тут при заказе важно выбрать правильный тип!

И тока!

Подобная ситуация есть и у всенародно любимых интегральных стабилизаторов L78XX и L79XX. Здесь к базовому обозначению добавляются две цифры, указывающие на выходное напряжение стабилизаторов: L7805 — выходное напряжение 5В, L7912 — выходное напряжение -12В.

Но в середине номера могут присутствовать буквы, которые обозначают максимальный выходной ток стабилизатора. Возможны три варианта маркировки, как представлено в таблице:

СимволМаксимальный ток
L0.1 A (100mA)
M0.5A (500mA)
S2A

Так стабилизатор с маркировкой «78L15» будет выдавать на выходе напряжение 15В и максимальный ток 100мА.

Проявляйте внимательность при чтении каталогов производителей и соблюдайте осторожность  при заказе радиоэлектронных элементов!

Статья подготовлена по материалам журнала «Практическая электроника каждый день»

Роберт Пенфолд

Вольный перевод: Главный редактор «РадиоГазеты»

Источник: http://radiopages.ru/marker.html

Маркировка конденсаторов

Что такое  KV4KC (маркировка на радиоэлементе) и чем его заменить ?

> Советы электрика > Маркировка конденсаторов

Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения.

Они выпускаются многими производителями по всему миру с применением различных технологий.

Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

Конденсаторы различных типов

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

Конденсатор электролитический

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Важно! Номиналы конденсаторов в пикофарадах или микрофарадах могут не иметь буквенных обозначений. К примеру, 2200 может обозначать как 2200 pF так и 2200 μF. Здесь на помощь приходят габариты конденсатора и здравый смысл.

Пример обозначения

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала.

Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Пример обозначения напряжения

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Расположение маркировки на корпусе

Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

Подобным же методом наносится маркировка пленочных конденсаторов.

Пример маркировки различных характеристик

Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

Цветовая маркировка отечественных радиоэлементов

Цветовая маркировка заземляющих проводников

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

Цветовая маркировка

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

Маркировка конденсаторов импортного производства

Как проверить конденсатор мультиметром

Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр.

Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

Трехзначная кодировка

Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

Цветовая маркировка импортных конденсаторов

Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов.

Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение.

Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Маркировка SMD

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений.

Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры.

Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

Источник: https://elquanta.ru/sovety/markirovka-kondensatorov.html

Правила расшифровки маркировки конденсаторов

Что такое  KV4KC (маркировка на радиоэлементе) и чем его заменить ?

06.06.2017

  • 1 Параметры конденсаторов
  • 2 Типы маркировок
  • 3 Заключение

Огромное разнообразие конденсаторов позволяет использовать их практически в любой схеме.

Для правильного подбора параметров электрической сети необходимо четко владеть знаниями маркировки конденсаторов, которые имеют ключевое значение.

Сложность возникает из-за того, что она разнится в большом количестве случаев – на нее влияет производитель, страна-экспортер, вид и параметры самого конденсатора, и даже его размеры.

В данной статье рассмотрим основные параметры конденсаторов, которые влияют на их маркировку, а также научимся правильно читать значения, нанесенные производителем даже на самые крохотные изделия.

Параметры конденсаторов

Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион.

Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10-9 и 10-12 фарад.

Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.

Типы маркировок

На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

  • Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.

Маркировка больших изделий

  • Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.

Числовая и численно-буквенная маркировка маленьких конденсаторов

Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

  • первые две цифры обозначают первые две цифры емкости;
  • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
  • такие конденсаторы всегда измеряются в пикофарадах.

Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.

Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

  • Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.

Керамические конденсаторы с маркировкой

  • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом:
    • первые два цвета означают емкость в пикофарадах;
    • третий цвет показывает количество нулей, которые необходимо дописать;
    • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
ЦветЗначение
Черный0
Коричневый1
Красный2
Оранжевый3
Желтый4
Зеленый5
Голубой6
Фиолетовый7
Серый8
Белый9
  • Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

Заключение

Чем меньше конденсатор, тем более компактной записи он требует. Однако современное производство способно нанести на корпус достаточно маленькие значения, расшифровка которых выполняется вышеописанными способами. Внимательно проверяйте полученные значения во избежание поломки собранной электрической цепи.

Источник: https://LampaGid.ru/elektrika/komponenty/markirovka-kondensatorov

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф).

Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения.

Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора.

Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости.

Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности.

Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора.

При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления.

Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку.

В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

Расшифровка маркировки конденсаторов

Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

Обозначение цифр

Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 103 = 45000.

Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10-12. Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10-6. Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.

Обозначение букв

После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

Маркировка керамических конденсаторов

Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости.

С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» – + 0,25 пФ, D – + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ.

У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

Смешанная буквенно-цифровая маркировка

Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -300C, X = -550C. Второй цифровой символ – это максимальная температура.

Цифры соответствуют следующим показателям: 2 – 450С, 4 – 650С, 5 – 850С, 6 – 1050С, 7 – 1250С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

Прочие маркировки

Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.

Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

Источник: https://electric-220.ru/news/markirovka_kondensatorov/2016-09-23-1068

Как проверить варистор мультиметром: пошаговая инструкция

Что такое  KV4KC (маркировка на радиоэлементе) и чем его заменить ?

От перепадов напряжения не застрахована ни одна электросеть, есть множество причин вызывающих это явление, начиная от перегрузки и заканчивая перекосом фаз.

Такие броски способны вывести из строя бытовую технику, поэтому практически все современные электронные устройства имеют защиту.

Если после очередного перепада в БП какого-нибудь прибора сгорел предохранитель, произведя его замену, не спешите включать технику. На всякий случай проверьте варистор на исправность тестером или мультиметром.

Прежде, чем перейти к тестированию, рекомендуем ознакомиться с кратким описанием варистора, особенностями его работы и характеристиками. Эта информация может быть полезной при поиске аналога, взамен вышедшего из строя элемента.

Внешний вид варисторов

Характеристики

Варистор представляет собой полупроводниковый резистор с нелинейной вольт-амперной характеристикой, ее график показан на рисунке 2.

Рис. 2. Типичные вольт-амперные характеристики: А – варистора, В – обычного резистора

Как видно из графика, когда напряжение на полупроводнике достигает порогового значения, резко увеличивается сила тока, что вызвано понижением сопротивления. Эта характеристика позволяет использовать варистор в качестве защиты от кратковременных скачков напряжения.

Принцип действия, обозначение на схеме, варианты применения

Внешне варистор очень похож на конденсатор, но его внутреннее устройство, как видно из рисунка 3, совершенное иное.

Рисунок 3. Конструкция варистора (1) и его обозначение на схемах (2)

Обозначения:

  • А – два металлических электрода в форме диска;
  • В – вкрапления оксида цинка (размер кристаллов не соблюден);
  • С – оболочка полупроводника, сделанная на основе синтетических отвердителей (эпоксидов);
  • D – керамический изолятор;
  • Е – выводы.

Помимо конструкции, на рисунке 3 показано обозначение элемента на принципиальных схемах (2).

оксида цинка в керамическом изоляционном слое определяет порог срабатывания варистора, как только напряжение станет выше допустимого, сопротивление резко снижается и проходящий через полупроводник ток увеличивается. Вырабатывающаяся в результате этого процесса тепловая энергия рассеивается в воздухе.

Такой принцип действия позволяет не допустить выход из строя электронных устройств при краткосрочном перепаде напряжения. Длительный импульс вызовет перегрев и разрушение варистора, но на этот процесс требуется время. Хоть оно исчисляется долями секунды, в большинстве случаев, этого достаточно для срабатывания плавкого предохранителя.

Именно поэтому после замены предохранителя необходимо проверять варистор (внешний осмотр и тестирование мультиметром). В противном случае, следующий перепад напряжения, с большой долей вероятности, приведет к разрушению компонентов электронного устройства.

Пример реализации защиты

На рисунке 4 показан фрагмент принципиальной схемы БП компьютера, на котором наглядно показано типовое подключение варистора (выделено красным).

Рисунок 4. Варистор в блоке питания АТХ

Судя по рисунку, в схеме используется элемент TVR 10471К, используем его в качестве примера расшифровки маркировки:

  • первые три буквы обозначают тип, в нашем случае это серия TVR;
  • последующие две цифры указывают диаметр корпуса в миллиметрах, соответственно, у нашей детали диаметр 10 мм;
  • далее идут три цифры, которые указывают действующее напряжение для данного элемента. Расшифровывается следующим образом: XXY = XX*10y, в нашем случае это 47*101, то есть 470 вольт;
  • последняя буква указывает класс точности, «К» соответствует 10%.

Можно встретить и более простую маркировку, например, К275, в этом случае К – это класс точности (10%), последующие три цифры обозначают величину действующего напряжения, то есть, 275 вольт.

Теперь, когда мы разобрались с основами, можно перейти к проверке варистора

Определяем работоспособность элемента (пошаговая инструкция)

Для данной операции нам потребуются следующие инструменты:

  • Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
  • Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
  • Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
  • Канифоль и припой.
  • Мультиметр или другой прибор, позволяющий измерить сопротивление.

Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:

  1. Разбираем корпус устройства. В данном случае дать детальную инструкцию как это сделать затруднительно, поскольку конструкции приборов существенно отличаются друг от друга. Эту информацию можно найти в инструкции к оборудованию или на сайте производителя, также поможет поиск на тематических форумах и блогах.
  2. Добравшись до печатной платы БП, следует очистить ее от пыли. Делать это нужно аккуратно, чтобы не повредить радиодетали. Бывали случаи, когда от чрезмерного усилия, в процессе чистки, щетка повреждала транзистор, тиристор или другой компанент.
  3. Когда пыль удалена, находим варистор, он имеет характерный вид, поэтому спутать его можно разве что с конденсатором, но последний отличается маркировкой.Варистор в силовой части БП
  4. Найдя элемент, тщательно осматриваем его на предмет повреждений. Это могут быть трещины, сколы и другие нарушения целостности корпуса. В большинстве случаев, определить неисправность можно на этом этапе. При обнаружении повреждений элемент выпаиваем и меняем на такой же или аналог. Подобрать его можно самостоятельно (расшифровка маркировки приводилась выше) или посоветовавшись с продавцом радиодеталей.Варистор со следами повреждений
  5. Если визуальный осмотр не дал результатов, следует проверить варистор мультиметром, для этого выпаиваем деталь.
  6. Для проведения измерения подключаем щупы к мультиметру (на рисунке 7 гнезда показаны зеленым цветом) и переводим его в режим измерения максимального сопротивления (красный круг на рис. 7). Если у вас мультиметр другого типа, воспользуйтесь инструкцией к прибору.Рисунок 7. Установка режима отмечена красным, гнезда для щупов – зеленым
  7. Касаемся щупами выводов и измеряем сопротивление варистора. Оно должно быть бесконечно большим. Иное значение указывает на неисправность варистора, следовательно, его необходимо заменить.

Важный момент! Прежде, чем измерить сопротивление, убедитесь, что пальцы не касаются стальных наконечников щупов, в этом случае прибор покажет сопротивление кожного покрова.

  1. Произведя замену (если в этом есть необходимость), собираем устройство.

Обсудить на форуме ОЦЕНИТЬ: (29 4,55 из 5)
Загрузка…

Источник: https://www.asutpp.ru/kak-proverit-varistor-multimetrom-poshagovaya-instrukciya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.